BIG PLANS FOR THE MOON!

LUNAR SOUTH POLE

Above: spectacular oblique view of the rim of Shackleton crater (21 km diameter, 89.66°S, 129.20°E). While no location on the Moon stays continuously illuminated, three points on the rim remain collectively sunlit for more than 90% of the year. These points are surrounded by topographic depressions that never receive sunlight, creating cold traps that can capture ices, NAC M1224655261LR [NASA/GSFC/Arizona State University].
The spin axis of the Moon is titled less than two degrees, thus the lighting conditions at the poles are always extreme. The long deep shadows give the impression that the polar regions are unusually rough and thus dangerous. However, the topography is no different than that found near the equator. So, polar landings should be relatively safe, even in permanently shadowed regions (PSRs), if the spacecraft is equipped with active landing sensors (lidar or radar). The permanent shadows are formed by topographic highs, and even though these high points are often narrow, they are very inviting landing spots because many are illuminated for most of the lunar year. Future surface missions to the lunar poles will likely utilize these highly illuminated regions, where solar power is abundant, as jumping off points to determine what volatiles (water ice, methane, etc.) PSRs may hold, and how these volatiles can be utilized as resources for future human exploration. For now, you can explore the high-resolution oblique view of the illuminated rim of Shackleton crater near the South Pole, on the right.

Rovers and instruments that could explore these regions would normally rely on solar power and batteries for power. Even in places near the poles that receive some sunlight, it is necessary to understand how much sunlight they receive so that a rover does not accidentally become stuck in the dark long enough to run down its batteries. 

On the left: Spectacular oblique view of the rim of Shackleton crater (21 km diameter, 89.66°S, 129.20°E). While no location on the Moon stays continuously illuminated, three points on the rim remain collectively sunlit for more than 90% of the year. These points are surrounded by topographic depressions that never receive sunlight, creating cold traps that can capture ices, NAC M1224655261LR [NASA/GSFC/Arizona State University].

LUNAR NORTH POLE

New Reduced Data Records (RDRs) available as part of the 32nd Planetary Data System (PDS) release include two versions of the polar illumination maps for each pole. They include this time-weighted north pole illumination map that extends from 88ºN to the lunar north pole at 90ºN, as well as other new products. These maps show how much sunlight specific locations receive over the course of a lunar year. Areas that are nearly white are almost always in the sunlight, while black areas are Permanently Shadowed Regions (PSRs).  Credit: NASA/GSFC/Arizona State University.
 

OuterSpaceEconomy/Asteroid